Identifying and Understanding the Structural Break in Meat Demand in the U.S.

EconTR 2020 Conference in Eskisehir

Omer Kara¹

¹Department of Economics Eskisehir Osmangazi University

September 16, 2020

Outline

- Introduction
 - Purpose
- 2 Literature Review
- 3 Data Descriptions
- 4 Empirical Methods
 - LA/AIDS Model
 - Structural Break Testing Procedure
- Results
 - Structural Break
 - Estimated Elasticities
- 6 Conclusion

Introduction

- Policy makers, consumers, and producers need to know the response of the market to particular events which might change the market structure.
- For demand systems, structural break is a change in the parameters of the representative consumer's unobservable utility function.
- Structural break may lead to permanent changes in consumer preferences.
- In empirical demand analysis, identification and understanding of structural breaks are serious challenges.
 - Identification is crucial since assuming a stable utility function in the presence of a structural break might lead to false inference and misguided policy recommendations.
 - Understanding means that the researcher should also examine the possible sources of structural break such as commodity prices or expenditures.

Introduction

- Several studies indicate that the structure of meat preferences shifted in the late 1970s.
 - A decline in the demand for beef and pork
 - · An increase in poultry and seafood
- Some factors that contributed to a change in consumer preferences and spending habits in the U.S. meat demand; and thus, a change in the meat demand structure.
 - Medical evidence linking red meat consumption to high blood cholesterol levels (Dahlgran, 1988)
 - Seafood is found to be particularly healthy due to its Omega-3 fatty acids.

4/18

- New popularity of chicken in restaurants (Thurman, 1987)
- Social and economic changes (Rickertsen, 1996)

Purpose

- Examining whether the change in consumer preferences and spending habits for different type of meats have caused structural break in the U.S. meat demand.
- Identifying the structural break and understanding its source can help producers to reduce risks by taking positions in advance and prevent misguided policy recommendations.
- The change in meat demand structure is investigated by allowing one structural break.
 - Data segments determined by Chow test.
 - Linear Approximation of Almost Ideal Demand System (LA/AIDS) model in the first-differenced form
 - Source of the structural break is revealed using dummy variable approach.
 - Change in consumer preferences and spending habits are unveiled comparing Marshallian, Hicksian, and Morishima elasticities before and after structural break.

Literature Review

- Although, there is a general agreement that structural break in the U.S meat demand did occur in the late 1970s in previous literature, there are also some studies which provide contradictory evidence.
- Table 1 summarizes all of these studies and their associated results.

Table 1. A Summary of Previous Studies on Structural Break in Meat Demand

Data	Meat Types	Result
1950-1977	Beef, veal, pork and chicken	No Structural Break
		for any of the meats
1965-1979	Beef and chicken	Structural Break
	Turkey and pork	No Structural Break
1950-1979	Poultry and Beef	Structural Break
	Pork	No Structural Break
1950-1982	Beef and Pork	Structural Break
1966-1981	Beef	No Structural Break
1947-1983	Beef	No Structural Break
	1950-1977 1965-1979 1950-1979 1950-1982 1966-1981	1950-1977 Beef, veal, pork and chicken 1965-1979 Beef and chicken Turkey and pork 1950-1979 Poultry and Beef Pork 1950-1982 Beef and Pork 1966-1981 Beef

^{*}Source: Dahlgran (1988).

Data Descriptions

- A yearly dataset
 - Collected and distributed by United States Department of Agriculture (USDA).
 - Covers from 1970 to 2010.
 - Consisted of per capita retail quantity in pounds, consumer price index, and per capita expenditure in dollars for beef, yeal, pork, poultry, and fish.
 - With a base year of 1982-1984.
- Beef and veal categories are aggregated into a single "beef and veal" category, called "beef", to identify the aggregated red meat other than pork.
- Consumption patterns for meat products have changed considerably over the periods 1970-2010 in the U.S.
 - Decline in per capita consumption of beef and pork, 32% and 15% respectively
 - Increase in per capita consumption of poultry and fish, 106% and 35% respectively
 - Decrease in budget shares for beef and pork, 22% for both
 - Rise in budget shares for poultry and fish, 74% and 130% respectively

LA/AIDS Model in the First–Differenced Form

• The LA/AIDS model in first-differenced form is employed as the main model.

$$\Delta w_{it} = \theta_i + \beta_i \left[\Delta \log x_i - \sum_j w_{jt} \Delta \log p_{jt} \right] + \sum_k \gamma_{ik} \Delta \log p_{kt} + \varepsilon_{it}$$
 (1)

where *i* and *k* indexes the meats; t = 1, ..., T indexes time; p_i denotes the consumer price index for i^{th} meat; x denotes the total expenditure on all type of meats; w_i represents the budget share of i^{th} meat; ε is the error term; and θ , β , and γ are the parameters.

• To be consistent with the fundamental assumptions of the demand theory, the following restrictions must hold.

$$\sum_{i} \theta_{i} = 1, \quad \sum_{i} \beta_{i} = 0, \quad \sum_{i} \gamma_{ik} = 0$$
 (Adding-up Restrictions)
$$\sum_{i} \gamma_{ik} = 0$$
 (Homogeneity Restriction)

$$\sum_{i} \gamma_{ik} = 0$$

(Symmetry Restriction)

LA/AIDS Model in the First–Differenced Form

 Marshallian price elasticity, income elasticity, and Morishima elasticity of meats are

$$\eta_{i} = \frac{\beta_{i}}{w_{i}} + 1 \qquad \text{(Income Elasticity of the } i_{th} \text{ meat)}$$

$$\epsilon_{ik} = \frac{\gamma_{ik} - \beta_{i} w_{k}}{w_{i}} \qquad \text{(Cross Price Elasticity between the } i_{th} \text{ and } k_{th} \text{ meat)}$$

$$\epsilon_{ii} = \frac{\gamma_{ii}}{w_{i}} - \beta_{i} - 1 \qquad \text{(Own Price Elasticity of the } i_{th} \text{ meat)}$$

$$\sigma_{ik} = \epsilon_{ki}^{*} - \epsilon_{ii}^{*} \qquad \text{(Morishima Elasticity between the } i_{th} \text{ and } k_{th} \text{ meat)}$$

where ϵ^* denotes the Hicksian price elasticities and w_i indicates the mean budget share of the i_{th} meat.

Procedure in Structural Break Testing

- Before performing Chow test in the first–differenced LA/AIDS model as presented in Eq. 1, homogeneity and symmetry restrictions are tested.
- If these restrictions hold, then the Chow test is performed by jointly imposing homogeneity and symmetry restrictions.
- Although the Chow test detects the presence and location of the structural break, it does not provide any information about the source.
 - Dummy variable approach is employed.
 - "Pure structural break" in which the entire parmeter vector is subject to change (i.e., intercept, expenditure, and consumer price index parameters)
 - "Partial structural break" in which only a component of the parmeter vector is subject to change.
 - In each case homogeneity and symmetry restrictions should hold.

Structural Break Results - Chow Test

- In first–differenced LA/AIDS model as presented in Eq. 1, homogeneity and symmetry restrictions hold jointly.
 - LR test statistic is 4.6 and the associated p-value is 0.059.
 - The null hypothesis which jointly holds homogeneity and symmetry restrictions cannot be rejected at the 5% significance level.
- The Chow test is performed by jointly imposing homogeneity and symmetry restrictions.
 - In the 41 data points, the null hypothesis of no structural break is rejected in 5% significance level only for the year 1976 (the associated p-value is 0.0465).
 - The year 1976 is chosen as the structural break date.
 - Data are separated into two periods.
 - Before and after the structural break period, which are 1970-1975 (period 1) and 1976-2010 (period 2) respectively

Structural Break Results - Dummy Variable Approach

- The combination of dummy parameters for intercept and expenditure terms is the only specification which holds homogeneity and symmetry restrictions jointly.
- The Eq. 2 presents the modified first-differenced LA/AIDS model for the case of partial structural break.

$$\Delta w_{it} = \theta_i + \delta_i \Delta D_t + \beta_i \left[\Delta \log x_i - \sum_j w_{jt} \Delta \log p_{jt} \right] + \psi_i \Delta \left[D_t \left(\log x_i - \sum_j w_{jt} \Delta \log p_{jt} \right) \right] + \sum_k \gamma_{ik} \Delta \log p_{kt} + \varepsilon_{it}$$
 (2)

where D is the dummy variable which is 0 for 1970-1975 and 1 for 1976-2010, and δ and ψ are the structural break parameters for the intercept and expenditure respectively.

Modified restrictions are

$$\sum_{i} \theta_{i} = 1, \quad \sum_{i} \beta_{i} = 0, \quad \sum_{i} \gamma_{ik} = 0, \quad \sum_{i} \delta_{i} = 0, \quad \sum_{i} \psi_{i} = 1$$
 (Adding-up Restrictions)

 $\sum_{i} \gamma_{ik} = 0$ (Homogeneity Restriction)

 $\gamma_{ik} = \gamma_{ki}$ (Symmetry Restriction)

Structural Break Results - Source

- To gain some insight into the nature of structural break, the dummy parameters for intercept and expenditure terms are tested jointly and separately while the homogeneity and symmetry conditions are imposed.
 - The main source of the structural break is the meat expenditures.
 - Consumer behavior in the meat market has changed not through the meat prices but through the meat expenditures.
- Although, the intercept term is found to exhibit no structural break (i.e., dummy parameters for intercept are zero), it does not alter any of the elasticity calculations.
- The modified versions of elasticities related to Eq. 2 after structural break period are

$$\eta_i^a = \frac{\beta_i + \psi_i}{w_i^a} + 1 \qquad \qquad \text{(Income Elasticity of the i_{th} meat)}$$

$$\epsilon_{ik}^a = \frac{\gamma_{ik} - (\beta_i + \psi_i) \ w_k^a}{w_i^a} \qquad \qquad \text{(Cross Price Elasticity between the i_{th} and k_{th} meat)}$$

$$\epsilon_{ii}^a = \frac{\gamma_{ii}}{w_i^a} - (\beta_i + \psi_i) - 1 \qquad \qquad \text{(Own Price Elasticity of the i_{th} meat)}$$

$$\sigma_{ik}^a = \epsilon_{ki}^{*a} - \epsilon_{ii}^{*a} \qquad \qquad \text{(Morishima Elasticity between the i_{th} and k_{th} meat)}$$

where ϵ^* denotes the Hicksian price elasticities; w_i^a indicates the mean budget share of the i_{th} meat after the structural break; and superscript a denotes the after structural break. 4 0 1 4 4 4 5 1 4 5 1 5

Estimated Marshallian Elasticities

Table 3. Estimated Marshallian Elasticities at the Sample Mean

Beef	Pork	Poultry	Fish	Expenditure		
Before Structural Break						
-1.10485***	-0.07306*	-0.1118***	-0.10849***	1.3982***		
(<.0001)	(0.0831)	(0.0002)	(0.0003)	(<.0001)		
0.040366	-0.95637 ^{***}	-0.08633*	-0.03821	1.040541***		
(0.8205)	(<.0001)	(0.0753)	(0.4505)	(0.0006)		
-0.01438	-0.04813	-0.2265**	-0.26887**	0.557882		
(0.9600)	(0.6818)	(0.0234)	(0.0165)	(0.2060)		
0.691805	0.495164**	-0.23978	0.478692*	-1.42589*		
(0.1833)	(0.0194)	(0.1192)	(0.0625)	(0.0969)		
	After Struc	tural Break				
-0.90178***	0.016902	-0.08636*	-0.10605***	1.077296***		
(<.0001)	(0.7447)	(0.0664)	(0.0083)	(<.0001)		
0.079982	-0.93503 ^{***}	-0.08211	-0.03454	0.971689***		
(0.5282)	(<.0001)	(0.2171)	(0.5513)	(0.0004)		
-0.06724	-0.05519	-0.44672 ^{***}	-0.18154 ^{**}	0.750687***		
(0.5568)	(0.4295)	(<.0001)	(0.0158)	(0.0027)		
-0.41458 ^{**}	-0.10623	-0.33602***	-0.2803**	1.137121***		
	-1.10485*** (<.0001) 0.040366 (0.8205) -0.01438 (0.9600) 0.691805 (0.1833) -0.90178*** (<.0001) 0.079982 (0.5282) -0.06724 (0.5568)	Before Strue	Before Structural Break -0.07306* -0.1118*** (<.0001) (0.0831) (0.0002) (0.040366 -0.95637*** -0.08633* (0.8205) (<.0001) (0.0753) -0.01438 -0.04813 -0.2265** (0.9600) (0.6818) (0.0234) (0.691805 0.495164** -0.23978 (0.1833) (0.0194) (0.1192) After Structural Break -0.90178*** 0.016902 -0.08636* (<.0001) (0.7447) (0.0664) (0.79982 -0.93503*** -0.08211 (0.5282) (<.0001) (0.2171) -0.06724 -0.05519 -0.44672*** (0.5568) (0.4295) (<.0001)	Before Structural Break		

^{***, **, **} denotes significance at 1%, 5%, and 10% level respectively.

Estimated Hicksian Elasticities

Table 4. Estimated Hicksian Elasticities at the Sample Mean

	Beef	Pork	Poultry	Fish
	<u>B</u>	efore Structural Brea	a <u>k</u>	
Beef	-0.34535***	0.287462***	0.068541***	-0.01066
·	(<.0001)	(<.0001)	(0.0063)	(0.6527)
Pork	0.605593***	-0.68807***	0.047881	0.034598
	(<.0001)	(<.0001)	(0.2084)	(0.3993)
Poultry	0.288661***	0.09572	-0.15455	-0.22983**
	(0.0063)	(0.2084)	(0.1737)	(0.0137)
Fish	-0.08274	0.127503	-0.42369**	0.378927^*
	(0.6527)	(0.3993)	(0.0137)	(0.0827)
	A	After Structural Brea	k	
Beef	-0.41258***	0.275076***	0.109643***	0.027863***
	(<.0001)	(<.0001)	(0.0004)	(0.3280)
Pork	0.521225***	-0.70216***	0.094685**	0.086253*
	(<.0001)	(<.0001)	(0.0243)	(0.0561)
Poultry	0.27365***	0.124717**	-0.31014***	-0.08822
	(0.0004)	(0.0243)	(0.0004)	(0.1683)
Fish	0.101784	0.166285*	-0.12913	-0.13894
	(0.3280)	(0.0561)	(0.1683)	(0.2523)

^{***, **, **} denotes significance at 1%, 5%, and 10% level respectively.

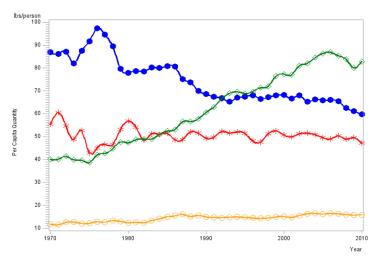
Estimated Morishima Elasticities

Table 5. Estimated Morishima Elasticities at the Sample Mean

	Beef	Pork	Poultry	Fish
	<u>B</u>	efore Structural Brea	<u>ık</u>	
Beef		0.260247***	-0.05669	-0.42809**
		(<.0001)	(0.4700)	(0.0122)
Pork	-0.40061***	, ,	-0.59235***	-0.56057***
	(<.0001)		(<.0001)	(0.0002)
Poultry	-0.08601	-0.10667	, ,	-0.57823***
	(0.3927)	(0.3273)		(0.0009)
Fish	0.368269*	0.413525**	0.149092	, ,
	(0.0777)	(0.0416)	(0.4600)	
	1	After Structural Breal	k	
Beef		0.108643*	-0.13893**	-0.3108***
		0.0536)	(0.0136)	(0.0009)
Pork	-0.42709***		-0.57745***	-0.53588***
	(<.0001)		(<.0001)	(<.0001)
Poultry	-0.2005***	-0.21546***	, ,	-0.43927***
	(0.0048)	0.0094)		(<.0001)
Fish	-0.11108	0.166285	-0.22717*	
	(0.3176)	(0.6190)	(0.0544)	

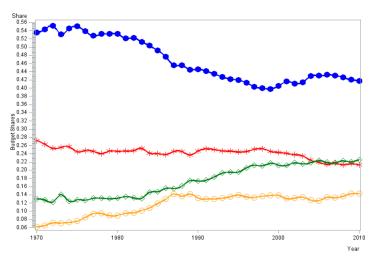
^{***, **, **} denotes significance at 1%, 5% and 10% level respectively.

Conclusion


- The meat expenditure exhibited the most significant effect in the U.S. meat demand.
- The estimated Marshallian, Hicksian, and Morishima elasticities indicated that the structure of beef, pork, poultry, and fish demand have changed significantly.
- After the structural break,
 - fish turns out to be a normal good.
 - the income elasticities of beef and pork have decreased while the income elasticities of poultry and fish have increased.
 - the cross price elasticity of pork and beef, and poultry and beef have decreased.
 - except fish the own price elasticities of all other meats has increased.
 - the degree of substitutability between beef and pork has decreased.
 - the degree of substitutability between fish and other meats has increased.

Thank You!

Questions?


Additional Figure

* Blue=Beef and Veal; Red=Pork; Green=Poultry; Orange=fish

Figure 1: Per Capita Retail Quantity of Meats Between 1970-2010

Additional Figure

^{*} Blue=Beef and Veal; Red=Pork; Green=Poultry; Orange=fish

Figure 2: Budget Shares of Meats Between 1970-2010

